Nanoparticle clusters:

An introduction to small-angle xray scattering (SAXS)

Ben Gilbert,

Earth Sciences Division

Lawrence Berkeley National Lab.

Collaborators

Goethite nanoparticles:

- Chris Kim Chapman University, CA
 - Nanogoethite synthesis and characterization
- Guopeng Lu LBNL
 - Lattice Boltzmann simulation
- Mike Toney SSRL
 - Simulated annealing

SSRL Scientific support:

John Pople

Funding - LBNL LDRD & DOE BES

Sources of Nanominerals

Combustion products

Man-made

Natural

Biomineralization

Inorganic precipitation

Nanoparticle Aggregation Morphologies α -FeOOH nanoparticles

Chris Kim unpublished

Biogenic UO₂ nanoparticles

Suzuki et al., Nature 419, 134 (2002)

Labrenz et al., Science 290, 1744 (2000)

Consequences of Aggregation

- Mineral Growth
 - Aggregation-based pathways
- Transport
 - Bioremedation efficacy
- Surface Geochemical Processes
 - Ligand-mediated dissolution
- Detection
 - Induced polarization methods

Nanoparticles in Aqueous Environments

- Under what conditions do nanoparticles aggregate?
 - Size, solution chemistry *experiment*
 - Derive interparticle forces *modeling*
- 2 What aggregate structures are formed?
 - Measure cluster size, morphology, density experiment
 - Simulate aggregation processes *modeling*
- 3 How do aggregates travel through porous media?
 - Flow column experiments experiment
 - Simulate settling and straining effects *modeling*

Nanoparticles in Aqueous Environments

experiment •

modeling

- Under what conditions do nanoparticle
 - Size, solution chemistry
 - Derive interparticle forces

Small-angle

x-ray

scattering

- 2 What aggregate structures are formed?
 - Measure cluster size, morphology, density
 - Simulate aggregation processes

experiment

modeling

- 3 How do aggregates travel through porous media?
 - Flow column experiments

experiment

- Simulate settling and straining effects

modeling

Suggested reading:

Neutron, X-ray and Light Scattering:

Introduction to an Investigative Tool for Colloidal and Polymeric Systems

P. Lindner & Th. Zemb (Eds.)

North-Holland, Amsterdam, 1991

www.alibris.com www.zubalbooks.com

X-ray scattering basics

$$q = \frac{4\pi}{\lambda} \sin \theta$$

$$q = \frac{2\pi}{d}$$

SAXS: small-angle x-ray scattering

$$10^{-3} \, \text{Å}^{-1} < q_{max} < 0.1 \, \text{Å}^{-1}$$

- Scattering from electron density contrast
- WAXS: wide-angle x-ray scattering

$$0 < q_{max} < 5 \text{ Å}^{-1}$$

- Equivalent to conventional X-ray Diffraction (XRD)
- High-energy WAXS:

$$q_{max} > 20 \text{ Å}^{-1}$$

- Fourier inversion provides the real-space Pair Distribution Function

SAXS = diffraction from particles

oriented Fe₂O₃ and PbS nanoparticles

WAXS = XRD = diffraction from atoms

x-rays

Redl et al., Nature 423, 968 (2003)

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

CALIPSO SEMINAR 30TH NOV 2005

P(q) = particle scattering

Dilute solutions:

$$I(q) = P(q)$$

S(q) = interparticle scattering

Concentrated solutions or aggregates:

$$I(q) = S(q)P(q)$$

(identical particles)

Scattering vs.
$$q$$
, not θ :

$$q = \frac{4\pi}{\lambda} \sin \theta$$

$$q = \frac{2\pi}{d}$$

The particle scattering, P(q), depends on the shape of the particle

$$P(q) = \int \Delta \rho^2 \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

E.g., Form factor, F(q), for rods length L = 80 nm, diameter d = 4 nm

Guinier region

$$I(q) = P(0) \exp\left[-\frac{q^2 R_g}{3}\right]$$

The Structure Factor, S(q), given by relative arrangement of particles

S(q) is related to statistical descriptions of the particle positions:

the particle-particle pair correlation functions, g(r)

Computationally convenient. S(q) can be calculated just like the Debye Eqn for x-ray diffraction

e.g., for N particles of known position

$$S(q) = 1 + \frac{1}{N} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\sin(qr_{ij})}{qr_{ij}}$$

... this is a discrete sin-transform of g(r)!

The Structure Factor, S(q), given by FT of the pair correlation function, g(r)

$$S(q) = 1 + \frac{N}{V} \int 4\pi r^2 \left[g(r) - 1\right] \frac{\sin(qr)}{qr} dr$$

Definition of g(r)

1D representation of **3D** structure Related to the **radial distribution function** (RDF) Probability of finding another particle within $r \rightarrow r + \delta r$

The Structure Factor, S(q), given by FT of the pair correlation function, g(r)

$$S(q) = 1 + \frac{N}{V} \int 4\pi r^2 \left[g(r) - 1\right] \frac{\sin(qr)}{qr} dr$$

Definition of g(r)

1D representation of **3D** structure Related to the **radial distribution function** (RDF) Probability of finding another particle within $r \rightarrow r + \delta r$

The Structure Factor, S(q), given by FT of the pair correlation function, g(r)

$$S(q) = 1 + \frac{N}{V} \int 4\pi r^2 \left[g(r) - 1\right] \frac{\sin(qr)}{qr} dr$$

Definition of g(r)

1D representation of **3D** structure Related to the **radial distribution function** (RDF) Probability of finding another particle within $r \rightarrow r + \delta r$

Analysis of SAXS data for aggregates = estimating g(r)

I. Analytical expression for g(r)

e.g. fractal aggregates

$$[g(r)-1] \propto r^{D_F-3} \exp(-r/\xi)$$

e.g. hard spheres

Complex coupled equations

II. Simulate g(r)

constrain n(r), P(q)

Simulated SAXS

SAXS from Porous Media

Two length scales - two Porod regions

porous grains

SAXS from dried **ZnS** nanoparticles

Theory: Spalla et al., *J. Appl. Cryst.* **36**, 338 (2003)

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

CALIPSO SEMINAR 30TH NOV 2005

SAXS from Porous Media

Two length scales - two Porod regions

porous grains

voids

Asymptotes give two surface areas

Ratio of surface areas = 600

Theory: Spalla et al., *J. Appl. Cryst.* **36**, 338 (2003)

Research plan:

SAXS of nanoparticle dispersions

interparticle interaction forces

Simulations of aggregation

real-space aggregate structure

SAXS of aggregates

test simulations

Calculation of hydrodynamic properties

Larger scale transport experiments

Surface charge vs. pH

Lumsdon & Evans, *J. Coll. Interf. Sci.* **164**, 119 (1993)

SAXS of 6 nm diameter FeOOH nanoparticles at pH 5.0 vs. ionic strength

Single particle scattering at **pH 5.0** and 10⁻³ M NaNO₃

Fit particle size and size distribution

Structure factor at **pH 5.0** and 10⁻⁴ M NaNO₃

Fit electrostatic parameters, Z^{eff} , K^{eff} .

Lattice Boltzmann:

rrrrrr

BERKELEY LAB

Currently limited to 2D!

growth of fractal crystal structures simulated SAXS patterns

Fit to simulated data:

SAXS from Fractal Aggregates

Two length scales

individual particle size, r_o largest cluster size, ξ

$$[g(r)-1] \propto \frac{r^{D_F-3}}{r_o^{D_F}} \exp(-r/\xi)$$

Fractal dimension, D_F Efficiency of space filling

SAXS can measure size & D_F ANALYTICAL APPROACH

Teixeira, J. Appl. Cryst. 21, 781 (1988)

CALIPSO SEMINAR 30TH NOV 2005

SAXS of 6 nm diameter FeOOH nanoparticles vs. pH Volume Fraction = 0.075 %; 10⁻² M NaNO₃

SAXS of 6 nm diameter FeOOH nanoparticles vs. pH Volume Fraction = 0.075 %; 10⁻³ M NaNO₃

SAXS from Fractal Aggregates

Numerical simulation

Reveals breakdown of fractal description at low *r*

Fractal properties not well-defined for < 50 particles

Lattuada et al., *J. Coll. Interf. Sci.* **268**, 106 (2003)

ERNEST ORLANDO LAWRENCE
BERKELEY LAB

BERKELEY NATIONAL LABORATORY

Monodisperse particles Sharp peaks in g(r) and S(q)

Hasmy et al., *Phys. Rev. B* **48**, 9345 (1993)

CALIPSO SEMINAR 30TH NOV 2005

Conclusions

- Coulombic repulsion evident in non-aggregated suspensions of goethite nanoparticles.
- Larger data set and better analysis required to parameterize effective pair potentials
- Nanoparticles form aggregated clusters with fractal internal structure well below the pH_{zpc}
 - Morphology & short-range structure uncertain
- Cluster size and density dependent on solution condition, as expected
 - What determines maximum cluster size?

Long term goal:

Lattice Boltzmann simulations interparticle interaction forces hydrodynamic behavior

Alternative:

Simulated annealing
no physical description
seek agreement with SAXS data

Simulated annealing:

DAMMIN code optimized for macromolecules porous structures possible in principle

pH 4.99

pH 5.45

pH 6.30

Svergun, *Biophysical J.* 76, 2879 (1999)

Linear aggregates?

TEM observations and **MD** simulation highlight role of *anisotropic structure*

Penn & Banfield Am. Mineral. 83, 1077 (1998)

Rustad & Felmy *Geochim. Cosmochim. Acta,* **69**, 1405 (2005)

FeOOH nanoparticles

Guyodo et al., Geophys. Res. Lett. 30, 1512 (2003)

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

CALIPSO SEMINAR 30TH NOV 2005

Linear aggregates?

Monte Carlo simulations (2D) highlight role of *repulsive interactions*

High energy aggregate

Low energy aggregate

Lebovka et al., *EuroPhys. Lett.* **41**, 19 (1998)

Repulsive interactions likely limit maximum cluster size

Particle-cluster and cluster-cluster aggregation halts when:

Repulsive interactions likely limit maximum cluster size

Particle-cluster and cluster-cluster aggregation halts when

Partial Disaggregation of Goethite Clusters

Almost reversible process ...

Partial Disaggregation of Goethite Clusters

Almost reversible process ...

Partial Disaggregation of Goethite Clusters

Surface charge drive partial disaggregation?

Finite potential well upon aggregation
Test short-range interaction potentials in simulation

